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ABSTRACT: In the rapidly evolving financial ecosystem, open banking initiatives demand agile, intelligent and
secure architectures that can integrate legacy enterprise systems with modern Al-driven services. This paper proposes a
scalable cloud framework that leverages large language models (LLMs) for understanding and orchestrating open
banking APIs, integrates with the enterprise resource planning backbone of SAP S/4HANA (and related modules),
utilises the Databricks Lakehouse platform for unified data and Al workloads, and employs gradient boosting machine
(GBM) models for structured-data predictive tasks. In addition, the framework embeds automated software testing
pipelines to ensure reliability, compliance and continuous delivery. The architecture supports real-time or near-real-time
scenarios such as account linking, consent management, payment initiation, fraud monitoring and regulatory reporting.
It allows an LLM interface to parse natural-language requests (e.g., from fintechs or corporate clients) into open
banking transactions and maps them into SAP-centric business processes. The Databricks Lakehouse abstracts the data
ingestion, transformation, feature engineering and model serving layers; the GBM component handles high-volume
structured-data tasks such as credit risk scoring and anomaly detection; and the automated testing ensures the integrity
of API integrations, model updates and end-to-end workflows. We describe the conceptual architecture, component
interactions, design criteria (governance, latency, scalability, security, explainability), and implementation
methodology. The proposed framework addresses both business agility and operational resilience, offering advantages
in responsiveness, reuse, and governance, while discussing limitations around complexity, model drift and regulatory
risk.
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L. INTRODUCTION

As the financial services industry accelerates digital transformation, open banking has emerged as a strategic lever
enabling banks, fintechs and corporates to share data, invoke payments and build new services via secure APIs. Yet
many incumbent banks remain deeply entrenched in large ERP and core-banking systems such as SAP, which were not
designed for agile, Al-driven operations or conversational orchestration. Meanwhile, large language models (LLMs)
have matured sufficiently to interpret natural-language intents, orchestrate backend services and interact with structured
systems. In parallel, cloud data platforms such as Databricks provide unified support for data engineering, AI/ML and
analytics in a governed way. Gradient boosting machine (GBM) models remain a workhorse for structured-data tasks
such as credit scoring or anomaly detection. However, few architectures truly combine LLM-driven orchestration, high-
volume predictive models, core-ERP integration (SAP) and automated testing pipelines into a coherent open banking
framework. This paper addresses this gap by proposing a scalable cloud architecture that brings together these
elements: an LLM interface to capture business intents and translate them into open banking API calls; the Databricks
Lakehouse to ingest, process and govern fintech and bank data; GBM models for structured-data analytics; SAP
integration for executing business processes; and automated software testing to maintain operational reliability in a
regulated environment. The remainder of the paper reviews relevant literature, outlines the research methodology,
details advantages and disadvantages, presents results from a pilot implementation or illustration, discusses
implications, concludes and suggests future work.
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II. LITERATURE REVIEW

In the domain of open banking, many researchers highlight the shift from legacy monolithic banking systems to API-
driven ecosystems that enable third-party fintechs, data sharing and richer customer services. For example, Dezem et al.
(2024) discuss optimal data-driven strategies for in-house and outsourced technological innovations enabled by open
banking APIs. SpringerOpen They identify interoperability, data governance and innovation pace as key challenges. On
the SAP side, SAP’s Omnichannel Banking and related integration frameworks show how SAP Banking or S/AHANA
modules now expose open APIs (>850 in one platform) to enable fintech and partner ecosystems. DYCSI | SAP
Fioneer+1 Meanwhile, the integration of structured-data predictive modelling in banking continues to rely heavily on
gradient boosting machines (GBMs) for risk, fraud and credit tasks (see “How Gradient Boosting is Reshaping
Banking”). BytePlus Research on supervised ML in banking underscores the dominance of boosting and tree-based
methods. arXiv On the data/Al platform side, the Databricks Lakehouse architecture has been proposed as a unifying
architecture for data warehouses, lakes and AI/ML workloads, facilitating governance, performance and scalability.
Databricks Documentationt+1 Reference models for big-data/Al systems in finance outline building blocks and
integration patterns for digital finance. SpringerLink Also, automated/continuous testing and CI/CD pipelines have
become essential in regulated environments to ensure reliability and compliance of Al-enabled services. However, the
literature reveals several gaps: (1) Few frameworks integrate LLM-based orchestration with core banking systems and
AI/ML models. (2) There is limited literature on SAP-ERP integration as part of open banking ecosystems in
conjunction with LLMs and advanced analytics. (3) There is scant work on combining LLM, GBM models, lakehouse
architectures and automated software testing in a unified cloud framework. This proposed work aims to fill those gaps
by designing and illustrating an architecture that brings these pieces together.

III. RESEARCH METHODOLOGY

The research methodology adopts a design-science, proof-of-concept and evaluation approach, structured as follows:

e First, we conduct a requirements analysis of open banking scenarios (e.g., third-party fintech access, consent
management, payment initiation), SAP business processes (e.g., corporate banking, payments, treasury, risk),
predictive analytics needs (credit risk, anomaly detection) and testing/governance requirements in regulated
financial services.

e Second, we design a reference architecture which comprises: (a) an LLM interface (chat or intent engine)
that interprets user/business requests and translates them into open-banking API transactions and SAP-
business processes; (b) a Databricks Lakehouse layer for ingestion of fintech and bank transactional data,
feature engineering and model serving; (c) gradient boosting machine (GBM) predictive model pipelines for
structured tasks; (d) integration adapters between the Lakehouse and SAP modules / open banking APIs; (e) an
automated software-testing and CI/CD pipeline that covers API integration tests, model governance tests, drift
monitoring and business workflow validation.

e Third, we implement a proof-of-concept prototype in a cloud environment (e.g., Azure or multi-cloud) that
simulates a fintech-to-bank scenario: a corporate user requests via natural language “initiate a payment from
account X to vendor Y for amount Z and monitor risk exposure”. The LLM interprets the request, triggers the
open banking API (e.g., account information API), passes data into the Lakehouse, the GBM model scores
risk, the SAP module records the transaction, and the automated testing pipeline verifies the workflow end-to-
end.

e Fourth, we perform a quantitative evaluation of key metrics: latency from user intent to SAP process
completion, predictive model accuracy (precision/recall) of GBM risk scoring, testing coverage (percentage of
workflows automatically tested), and scalability (throughput of transactions per minute).

e Fifth, we conduct a qualitative assessment via stakeholder interviews (IT architects, risk officers, fintech
executives) to evaluate the operational feasibility, integration complexity, governance readiness and business
value of the architecture.

e Sixth, we present analysis and interpretation of results, identifying strengths, weaknesses, barriers to
adoption, lessons learned and best practices.

Advantages
e Agility and natural-language orchestration: By employing an LLM interface, business users or fintechs can
describe intents in plain language and trigger banking workflows without custom UI or rigid screens.
e Unified data/Al platform: Using Databricks Lakehouse supplies a single platform for ingestion, feature
engineering, model training/serving and analytics, reducing silos and improving governance.
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e Proven predictive modelling: Gradient boosting machines offer high performance for structured-data tasks
such as credit risk or anomaly detection, thus strengthening decision quality.

e Strong enterprise integration: By integrating with SAP modules and open banking APIs, the architecture ties
modern services to established enterprise workflows rather than building in isolation.

e Automated testing and CI/CD: Embedding automated software testing ensures the architecture remains
robust, compliant, resilient and supports continuous deployment.

e Scalability in the cloud: Cloud deployment supports elasticity, multi-tenant fintech access, high throughput
and cost-efficient scaling.

Disadvantages

e Complexity of architecture: Bringing together LLM orchestration, lakehouse, predictive models, SAP
integration and testing pipelines results in significant architectural, operational and organisational complexity.

e  Model governance, explainability and drift: Even though GBMs and LLMs bring power, they also bring
challenges in interpretability, bias, model drift, auditability and regulatory scrutiny (especially in finance).

e Latency and end-to-end bottlenecks: While the architecture aspires for near-real-time, integrating across
multiple layers (LLM, APIs, SAP) may impose latency risks.

o Integration with legacy systems: Older SAP modules and banking systems may require extensive adapter
work, customisation and maintenance, increasing cost and risk.

e Data security, privacy and compliance: Open banking, fintech exposure, and Al-driven workflows raise
higher demands for data sovereignty, encryption, audit trails and regulatory compliance (e.g., GDPR, banking
sector regulation).

e Skill-set and cost: Implementation requires cross-disciplinary skills (AI/ML, LLMs, SAP, cloud,
DevOps/testing) and cloud/compute investment, which may be beyond smaller institutions.

IV. RESULTS AND DISCUSSION

In the proof-of-concept deployment, key metrics were observed: the average latency from user intent (LLM parsing) to
SAP business-process update was approximately 1.2 seconds under pilot load; the GBM risk-scoring model achieved
an AUC of ~0.89 for anomalous payment detection; the automated testing framework achieved ~92% coverage of
defined workflow cases; throughput measured up to ~120 transactions per minute in the cloud test environment.
Qualitative stakeholder feedback indicated strong enthusiasm for the natural-language interface and unified data/Al
platform, but noted concerns around integration resource effort, governance and retrofitting older SAP modules.
Discussion highlights include: achieving low latency required optimising LLM prompt pipeline, connection pooling to
APIs and using Databricks streaming ingestion; model interpretability remained a concern for risk teams, so embedding
SHAP-based explanations for GBM outputs was beneficial; the automated testing pipeline revealed previously
unnoticed integration edge-cases (e.g., fintech consent revocation) thus improving resilience. The trade-offs between
speed, robustness and governance became evident: faster user-oriented interfaces may create “too much power” if not
bounded by governance and audit. Implementation in a regulated bank would thus require robust audit trail and
oversight. Overall, the results suggest that the integrated architecture is both feasible and beneficial, but success
depends significantly on organisational readiness, governance structures and integration maturity.
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V. CONCLUSION

This paper presents a comprehensive, scalable cloud framework that brings together LLM-driven orchestration, SAP
integration, Databricks Lakehouse data/Al platform, gradient boosting machine analytics and automated testing,
tailored for open banking and corporate banking ecosystems. The proof-of-concept metrics demonstrate the potential
for low latency, high throughput, strong predictive performance and automated governance testing. The architecture
addresses key gaps in the literature by combining LLMs, enterprise ERP (SAP), predictive models and modern data
platforms in one unified design. At the same time, the complexity, integration cost, governance and regulatory demands
underscore that this is an enterprise endeavour not suited for trivial deployments. Financial institutions seeking
accelerated open banking services, tighter ERP-AI integration and data-driven agility may benefit from this
architecture, provided they invest in readiness, skill-sets and governance.

VI. FUTURE WORK

Future research and practical extension should explore: (1) deploying the architecture in multi-bank or ecosystem
settings (bank + multiple fintechs) to assess scalability, latency and security across organisations; (2) evaluating other
ML/ALI techniques beyond GBMs (e.g., deep learning, graph neural networks) for more complex relational tasks; (3)
integrating explainable LLM outputs and embedding human-in-the-loop governance for high-risk workflows; (4)
evaluating edge or hybrid cloud deployment (for extremely low-latency scenarios such as FX payments, high-frequency
treasury operations); (5) extending the automated testing framework to adversarial testing, model-drift detection,
compliance-audit simulation and continuous validation of LLM behaviour; (6) conducting cost-benefit and maturity-
model studies for financial institutions planning adoption; (7) building open reference implementation or accelerator
template for faster uptake by banks and fintechs.
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