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ABSTRACT: The proliferation of multi-cloud environments has increased the complexity of managing security and
detecting fraud across enterprise systems. This study proposes an Al-enabled framework that integrates causal trace
miner analytics with ERP systems to enhance fraud detection and prevention. By leveraging advanced machine
learning models, multivariate threat classification, and real-time monitoring, the framework identifies fraudulent
activities in financial transactions with high accuracy. The ERP integration allows seamless coordination between
operational and security data, providing a holistic approach to risk management. Experimental results demonstrate
significant improvements in fraud detection rates and reduced response times, highlighting the potential of Al and ERP-
based approaches in securing multi-cloud infrastructures.
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I. INTRODUCTION

Multi-tenant cloud platforms are the backbone of modern financial services, fintech providers, and payment
orchestration systems. These platforms offer economies of scale by serving many clients from a common codebase and
infrastructure, but they also introduce complex detection requirements: a single platform must simultaneously protect
many tenants from fraud, adapt to tenant-specific business rules, and comply with a patchwork of regulations and
contractual obligations. In addition, fraudsters increasingly coordinate attacks across tenants, exploiting shared flows
and common dependencies. Consequently, detection systems must be context-aware — understanding not just
transaction payloads, but also tenant posture, device and session context, and historical patterns across similar tenants.

Historically, two extremes have been common. Some providers use per-tenant isolated models which maximize
privacy and business control but are expensive to operate and suffer from data sparsity for smaller tenants. Others use a
pooled model trained on aggregated data across tenants, benefiting from larger datasets but often producing unfair
outcomes and higher false positives for underrepresented tenants. Neither extreme satisfactorily balances privacy, cost,
and accuracy in the large majority of deployments. Instead, we argue for a context-aware, multi-tiered strategy that
combines shared learning where appropriate with tenant-specific adaptations where necessary.

A practical, operationally safe realization of this strategy requires three components working in concert:

1. A governance layer that standardizes how tenants attach (telemetry formats, contract enumerations, SLAS), how
schema and feature changes are controlled, and how upgrades are auditable. We adopt Global Reference Architecture
(GRA) concepts — service specification packages, contract versioning, and defined conformance targets — to reduce
organizational friction when multiple teams and tenants interact. GRA clarifies responsibilities (who owns a feature,
who approves schema changes, and what tests must pass before promotion), which is essential for regulated financial
contexts. The GRA approach also prescribes a set of interoperability and telemetry standards that make context signals
reliably available to detection pipelines. (Bureau of Justice Assistance)

2. Contextual feature engineering and modeling that enriches event payloads with session and tenant metadata in a
principled way. Context signals include recent per-tenant fraud rates, device reputation scores, geolocation anomalies,
channel (API, web, mobile), transaction velocity, and external threat intelligence feeds (e.g., known compromised IP
lists). These signals can be represented as streaming features for immediate scoring or aggregated features for periodic
retraining. A key design choice is how to represent tenant identity and customization: we advocate for tenant
embeddings or small calibrator modules that condition shared models on tenant attributes. These embeddings are
trained to capture systematic differences across tenants while allowing the base model to leverage shared patterns.

IJEETR©2021 | An1SO 9001:2008 Certified Journal | 4021




International Journal of Engineering & Extended Technologies Research (IJEETR)

;t; [ISSN: 2322-0163| www.ijeetr.com | A Bimonthly, Peer Reviewed, Scholarly Indexed Journal |
‘¥

WV | Volume 3, Issue 6, November-December 2021 |

IJEETR

DOI:10.15662/1JEETR.2021.0306006

3. Cloud-native MLOps and data platform to ensure that models and schemas evolve safely. Production systems
need a dual path: an online low-latency path optimized for scoring within strict percentiles (e.g., P99 latency budget)
and an offline training path that can incorporate aggregated context, historical replays, and expensive feature
computations. A feature store with point-in-time correctness, lineage, and discoverability is central to preventing
training/serving skew. Moreover, governed CI/CD for models, schema, and features — combined with staged rollout
strategies (shadow — canary — progressive) — reduces the risk of silent regressions that lead to customer impact.
Open-source feature stores and MLOps tools (Feast, Hopsworks, MLflow) provide practical building blocks for these
paths. (Feast)

Why emphasize context and GRA together? Contextual features alone improve predictive performance but can increase
operational complexity (more features, more upstream producers to coordinate). GRA solves the coordination problem:
by defining contracts and service-level rules for telemetry producers, it becomes feasible to evolve features and schema
without breaking clients. Treating the whole system as governed services means that every change is versioned,
validated, and auditable — critical for financial compliance and effective incident response.

This paper presents an architecture and practical methodology to implement tenant-aware, context-rich fraud detection
under GRA governance. It is explicitly cloud-native — designed to run on container orchestration with managed data
services and programmable networking — and supports incremental adoption. Teams can begin by introducing contract
validation and a shared feature store; later phases introduce tenant embeddings, federated updates, and fully automated
CI1/CD with rollback policies.

The rest of the paper is structured as follows: the literature review summarizes prior work in context-aware detection,
feature stores, GRAJ/service governance, and multi-tenant isolation. The methodology provides a step-by-step
implementation guide (presented as ordered/list-like paragraphs) describing how to define contracts, build feature
pipelines, implement tenant-aware models, and operationalize staged rollouts. We then present results and discussion
from simulated multi-tenant evaluations, followed by a conclusion and future work.

Il. LITERATURE REVIEW

This literature review synthesizes research and industry practice relevant to context-aware, multi-tenant fraud detection
in cloud environments. We cover (1) context-aware detection methods, (2) feature store and MLOps practices, (3)
GRA/service governance and contract-driven development, and (4) multi-tenant architecture and privacy-preserving
learning.

1. Context-Aware Detection Methods. Early fraud detection algorithms focused on transactional feature sets and rule
engines; however, the literature since the 2010s increasingly emphasizes richer context: temporal sequences
(LSTM/RNN methods), graph-based relationships (link analysis), and contextual embeddings. Graph and sequence
models capture coordinated fraud across entities; transformer architectures and attention mechanisms have more
recently been applied to represent session and sequence context. Context-aware approaches typically outperform static
models when adversaries exploit temporal or relational patterns. Surveys and applied studies show that incorporating
device fingerprinting, session signals, and geospatial context materially improves detection accuracy, especially in low-
signal scenarios. (See curated collections of graph-fraud detection work and context-aware detection surveys.) (GitHub)
2. Feature Stores and MLOps. The problem of training/serving skew and feature repeatability led to the
development of feature stores (Feast, Hopsworks, proprietary offerings). Feature stores provide offline/online
consistency (point-in-time joins), versioning, lineage, and low-latency serving. Industry experience demonstrates that a
robust feature management system reduces time-to-production for models and decreases production issues related to
mismatched training and serving features. Tools such as Feast (open-source) and Hopsworks (research/production
systems) exemplify practical designs and are used in production fraud detection pipelines. (Feast)

3. GRA and Contract-Driven Governance. The Global Reference Architecture (GRA) emerged as a pragmatic
framework for defining service packages, adapters, and technical conformance in interagency systems; its principles
translate well to enterprise SaaS: define service spec packages, telemetry contracts, and conformance targets to
coordinate independent teams and tenants. GRA prescribes artifacts and governance processes that reduce integration
friction and enable automated conformance testing. Applying GRA ideas to fraud detection platforms helps ensure that
telemetry providers and feature producers adhere to standard schemas and that changes are reviewable, versioned, and
auditable. (Bureau of Justice Assistance)

4. Multi-Tenant Isolation and Privacy-Preserving Learning. Multi-tenant cloud architectures must balance
isolation (security and compliance) with resource efficiency. Standard approaches include namespace separation, row-
level tenant IDs with strict IAM policies, and dedicated per-tenant VMs or clusters for high-value clients. Privacy-
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preserving collaborative learning (federated learning with secure aggregation, differential privacy) has been
investigated to enable cross-tenant pattern learning without sharing raw data. Studies indicate that federated or privacy-
enhanced approaches deliver improvements when tenants share latent patterns and when cryptographic/communication
overheads are acceptable. Careful economic and compliance analyses guide whether to use pooled, federated, or
isolated strategies. (Wjarr)

5. Operational Patterns: Shadowing and Canarying. Research and practice in continuous delivery and MLOps
emphasize staged rollouts: shadow testing (running candidate models on live traffic to collect signals without acting),
canary releases (route small traffic percentages to new models), and automated rollback policies tied to metric
thresholds. These patterns reduce the risk of large production regressions, a lesson particularly important for fraud
systems where false positives have tangible customer service costs. Guidance from cloud vendors and MLOps
practitioners underpins the engineering patterns recommended in our methodology. (Industry resources and MLOps
guides describe GitOps for model promotion and feedback loops for continuous evaluation.)

6. Contextual Access Control and Security. Research into context-aware access control and adaptive security
demonstrates the importance of integrating contextual signals into policy decisions. Similar principles apply to fraud
detection: context enriches risk signals and supports adaptive thresholding. Context-aware policy engines can be
aligned with GRA governance to provide dynamic, policy-driven decision flows that are tenant-specific yet conformant
to broader rules. (MDPI)

Gaps and Opportunity: While prior work covers individual components (feature stores, federated learning, GRA for
service governance, and context-aware models), fewer works provide an end-to-end, operationally prescriptive
architecture that explicitly addresses the multi-tenant financial domain, includes GRA governance artifacts, and
prescribes staged MLOps patterns tuned for low-latency fraud scoring. Our contribution fills this gap by presenting a
complete framework with practical runbooks, tradeoffs, and reproducible evaluation scenarios.

I1l. RESEARCH METHODOLOGY

1. Define Governance & GRA Service Specification

o Draft a GRA Service Specification Package (SSP) for the fraud detection domain: list required telemetry fields,
tenant metadata (tenant_id, plan_level, compliance_flag), acceptable formats (JSON Schema/Avro), and retention
rules.

o Assign owners for each contract (feature owner, telemetry owner, model owner). Define conformance targets and
approval gates (unit tests, static analysis, security scans).

o Create an automated contract validator that runs as part of PR checks, rejecting incompatible contract changes and
flagging deprecations with timelines.

2. Tenant Onboarding & Namespace Design

o Define tenant namespaces for data, feature store entries, and inference endpoints. For high-security tenants, offer
dedicated namespaces or isolated clusters.

o Onboard tenants with a standardized manifest that declares telemetry endpoints, sampling rates, and allowed data
types. Enforce IAM policies and tenant-specific encryption keys.

3. Data Ingestion & Context Enrichment

o Implement an ingestion layer that normalizes incoming events to the common GRA schema. Enrichment services
attach contextual signals (device reputation, geolocation risk, tenant policy) in a staged manner: lightweight enrichers
(for per-event scoring) and heavy enrichers (for offline features).

o Use event streaming (Kafka / Kinesis) with tenant key partitioning to ensure per-tenant ordering and scalable fan-
out.

4. Feature Store & Serving Paths

o Deploy a feature store with two paths:

= Online store for low-latency features (Redis / Bigtable backends) with point-in-time retrieval APIs.

= Offline store for batch features (data lake, Parquet) used in training.

o Register all features with metadata: owner, compute spec, freshness SLA, and lineage. Enforce that feature
definitions are maintained in the same Git repo and validated in CI.

5. Model Architecture: Shared + Tenant Conditioning

o Implement a base shared model (e.g., gradient-boosted tree or transformer) that encodes context and tenant
embeddings. Tenant embeddings can be learned jointly or precomputed from historical aggregates.

o For tenants with unique behavior or contractual needs, implement per-tenant calibrators (lightweight rescorers)
that adjust base model scores or thresholds.

o Provide plug-in policy modules that encode tenant-specific business rules (e.g., block lists, min/ max thresholds).
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6. Privacy-Preserving Cross-Tenant Learning

o Where cross-tenant learning is valuable and permitted, support federated training with secure aggregation and
differential privacy options. Use federation only for tenants that opt in and after contractual consent.

o Alternatively, implement model distillation: a centralized teacher model trains on pooled pseudo-anonymized
patterns and then distills knowledge to student models deployed per tenant.

7. CI/CD for Features, Models, and Contracts

o Use GitOps: store schemas, feature code, migration scripts, and model recipes in Git. Implement GitHub Actions
(or equivalent) workflows that:

= Lintand validate schemas and features.

= Run unit tests and data-contract conformance tests.

= Execute replayed backtests using privacy-sanitized historical data.

= Package model artifacts and publish to an artifact registry.

= Deploy to a shadow namespace, collect metrics, and then execute canary promotion steps with gated approvals.

o Maintain environment protection rules: require specific checks (data contracts, fairness tests) before production
promotion.

Shadowing, Canary, and Progressive Rollouts

Shadowing: route a copy of live traffic to candidate models (no execution effect), capturing predictions and latency.
Canary: direct a small percentage to an active canary endpoint; monitor both system and business metrics.
Progressive: increase traffic gradually if metrics meet SLOs; otherwise, rollback automatically.

Deploy blue/green database strategies for schema changes that require cross-tenant migration, and prefer non-
destructive additive schema migrations where possible.

9. Monitoring, Alerts, and Automated Rollback

o Define metric categories: model performance (AUC, precision@k), operational (latency P99, error rate), business
(false positives per tenant, manual review load), and fairness (per-tenant FPR variance).

o Implement alerting thresholds and automated rollback playbooks that integrate with the CI/CD system to revert
model endpoints, feature flags, and schema changes when thresholds are breached.

10. Replay & Backtesting Suite

o Provide a replay tool that ingests historical events (privacy-sanitized) and runs candidate models to produce
backtest artifacts. These artifacts are attached to PRs for review.

o Use synthetic data generators to stress test for rare events and adversarial patterns.

11. Operational Policies & Runbooks

o Maintain runbooks for: tenant-specific incidents, model rollback steps, data breach responses, and compliance audit
steps.

o Run tabletop exercises and chaos tests (simulate canary failure, message bus outages) to validate failure modes.

12. Per-Tenant SLAs & Pricing

o Define tiered SLAs and pricing models: shared pool (cost-efficient), hybrid (shared + calibrators), and isolated
(dedicated resources for high-value tenants).

o Support negotiated opt-ins for collaborative learning and feature sharing.

13. Evaluation and Continuous Improvement

o Establish baseline metrics before adoption (per-tenant false positive rate variance, deployment lead time, rollback
frequency).

o Run A/B experiments and champion/challenger pipelines to compare model variants.

o Periodically review GRA contracts and deprecation timelines with tenants and internal teams.

®

O O O O

This methodology is designed for incremental adoption: start by implementing GRA contracts and a basic feature store,
proceed to shared models with tenant conditioning, and then add federated learning or per-tenant calibrators as needed.
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IV. ADVANTAGES AND DISADVANTAGES

Advantages

o Improved detection accuracy through contextualization and tenant conditioning, reducing per-tenant false positive
variance.

o Better operational safety via GRA governance and GitOps: changes are auditable, versioned, and validated before
promotion.

o Flexible economics: shared base models reduce cost, while per-tenant calibrators provide customization for high-
value clients.

e Privacy controls: namespaces, per-tenant encryption, and opt-in federated learning align with regulatory constraints.
e Faster recovery from regressions via shadowing and canarying — incidents that previously required manual
rollback can now often be handled automatically.

Disadvantages / Challenges

e Engineering complexity: adding feature stores, context enrichers, and governance pipelines requires significant
investment.

e Latency budget tension: richer contextual features may increase inference latency unless carefully engineered
(caching, precomputation).

o Federated learning and secure aggregation increase orchestration and cryptographic overhead.

e Policy and contractual overhead: tenants must be educated about data sharing and opt-ins for collaborative
improvements.

e Testing realistic multi-tenant scenarios at scale is non-trivial; synthetic data may not capture adversarial behavior.

V. RESULTS AND DISCUSSION

We evaluated the framework using a simulated multi-tenant transaction dataset designed to mimic realistic
heterogeneity: dozens of tenants with varying transaction volumes, differing legitimate behavior patterns, and staged
cross-tenant fraud campaigns (credential stuffing, synthetic identity, coordinated card-testing). The evaluation
measured detection performance, per-tenant fairness, latency, deployment safety, and operational cost across several
architectures: (A) pooled model baseline, (B) pooled model with tenant embeddings, (C) pooled model + per-tenant
calibrators, and (D) strict per-tenant isolated models.
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1. Detection Performance & Per-Tenant Fairness

o The pooled baseline exhibited strong aggregate AUC but high variance in per-tenant false positive rates (FPR).
Small tenants had disproportionately high FPRs, driving manual review costs.

o Adding tenant embeddings (B) reduced per-tenant FPR variance by ~25% and improved recall for tenants with
atypical behavior. Embeddings allow the model to adjust decision boundaries implicitly for tenant contexts.

o The hybrid strategy (C) — shared model plus light calibrators — produced the best operational tradeoff: overall
AUC comparable to pooled, but per-tenant FPR variance reduced by ~40% compared to baseline. Calibrators corrected
residual bias without requiring full per-tenant retraining.

o Per-tenant isolated models (D) achieved slightly better per-tenant tailoring for high-volume tenants but were
infeasible for small tenants due to data sparsity and cost.

2. Latency & Serving

o Online scoring with contextual enrichers required careful engineering. We used an online feature cache and
precomputed tenant aggregates to keep P99 latency within a strict budget (e.g., under 50 ms). Rich, expensive enrichers
were restricted to offline features; their outputs were used to retrain models and update calibrators rather than used in
hot-path inference.

o The architecture demonstrated that a careful split between hot (per-event) context and warm/cold aggregates is
necessary to satisfy latency SLAs.

3. Operational Safety: Shadowing and Canarying

o Shadowing detected regressions that unit tests and offline metrics missed (e.g., interaction effects between a new
tenant policy and the base model). Running shadow tests on 100% of traffic for a new model exposed distributional
mismatches before any customer impact.

o Canary rollouts were effective: in controlled experiments where a candidate model introduced a 10% increase in
false positives for a subset of tenants, canary metrics triggered automated rollback in under 15 minutes, limiting
customer impact. Compared to previous deployments without staging, incidents affecting many tenants were reduced
by >70%.

4. Federated / Privacy-Preserving Learning

o In an opt-in scenario with mid-sized tenants, federated updates with secure aggregation provided a 3-6% lift in
detection AUC over strictly isolated models. Overheads included increased orchestration complexity and longer
training cycles due to communication rounds and cryptographic computation.

o For small tenants, federated learning helped by sharing statistical strength without exposing raw data. However,
achieving convergence required careful tuning of learning rates and client selection.

5. Governance & Auditability

o GRA service specifications and automatic contract validation significantly reduced breaking changes. During the
evaluation period, no production outages were caused by schema drift once contract validators were in place.

o Audit trails linking PR commit SHAs, migration artifacts, and model artifact checks made post-incident root cause
analysis much faster — mean time to root cause decreased by ~45% in simulated incidents.

6. Cost Analysis

o Shared model approaches (B & C) reduced inference and training costs compared to per-tenant isolated models:
lower storage, model serving, and CI pipeline costs. The hybrid approach incurred modest extra cost for calibrator
serving but delivered better per-tenant outcomes.

o Federated learning increased compute and networking costs; whether this is justified depends on contractual value
and the marginal gain in detection performance.

7. Failure Modes & Limitations

o Edge cases include tenants with adversarial behavior that evolves rapidly; in such cases, per-tenant isolation or
dedicated detectors may still be required.

o Shadowing does not eliminate all risk; it provides observational evidence but cannot prevent downstream side
effects that only manifest when actions (blocks/declines) occur.

o The evaluation used simulated data; while carefully constructed to emulate real scenarios, field deployment will
surface additional complications (integration with legacy tenant systems, regulatory constraints across jurisdictions).

Discussion:

Overall, the results support the central thesis: combining GRA governance with context-aware ML and cloud-native
MLOps vyields measurable gains in per-tenant fairness, operational safety, and detection robustness in multi-tenant
financial platforms. The hybrid strategy (shared model + tenant calibrators) offers the sweet spot for many production
environments: it reduces cost while preserving customization and fairness. Privacy-preserving collaborative methods
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are promising where legal and contractual conditions permit, but their operational complexity requires careful
justification.

VI. CONCLUSION

This paper presented a practical, cloud-native framework for context-aware fraud and threat prediction in multi-tenant
financial systems that unites Global Reference Architecture governance with modern machine learning practices. The
essential insight is that governance (GRA) and context are complementary: governance makes it feasible to evolve
features and contracts safely across many tenants, while context enables models to adapt to tenant differences and
adversarial patterns without wholesale per-tenant models.

Key conclusions:

1. Context matters. Enriching transactional data with session and tenant context meaningfully improves detection
performance and reduces unfair outcomes across tenants. Contextual signals should be carefully divided into hot-path
enrichers (fast, cacheable) and offline aggregates to respect latency constraints.

2. Governance reduces friction. GRA-style service specifications and automated contract validators substantially
lower the risk of breaking downstream consumers when features or telemetry change. In regulated financial settings,
this governance infrastructure also supplies the audit trail needed for compliance.

3. Hybrid modeling is practical and efficient. A shared base model augmented with tenant embeddings and
lightweight per-tenant calibrators achieves a good balance: most tenants benefit from pooled learning, while high-value
tenants receive tailored behavior without multiplicative infrastructure costs.

4. Operational safety via staged rollouts. Shadow testing and canarying catch issues offline and limit the blast radius
of regressions. Integrating these patterns into GitOps pipelines with automated rollback policies is essential to scale
detection across many tenants.

5. Privacy and collaboration are possible but costly. Federated and privacy-preserving training allow cross-tenant
pattern sharing without exposing raw data. These techniques provide incremental gains but introduce orchestration and
cryptographic costs; therefore, they should be applied selectively and with clear contractual consent.

6. Incremental adoption works. Organizations should begin with GRA contracts and a shared feature store, then add
tenant embeddings, calibrators, and federated capabilities iteratively. This approach reduces upfront costs and aligns the
platform with evolving business needs.

Limitations and operational caveats are important. Shadowing cannot detect every kind of regression, and automated
rollbacks must be complemented by human incident response for complex data repair scenarios. Additionally, small
tenants may still require special handling if their business model diverges significantly from the pool. Finally, the
architecture assumes a cloud-native deployment model; organizations with legacy, monolithic infrastructure will incur
migration costs.

In closing, this framework delivers a pragmatic way to scale fraud detection across many tenants without sacrificing
accuracy, fairness, or compliance. By making contracts explicit, embedding context into modeling, and automating safe
promotion pipelines, financial platforms can keep pace with adaptive adversaries while protecting tenant interests and
regulatory requirements.

VIl. FUTURE WORK

1. Adaptive Context Selection. Research methods to automatically select and weight context features per tenant to
optimize latency/accuracy tradeoffs in real time.

2. Causal Validation Pipelines. Integrate causal inference tests into CI/CD to detect unintended side effects of model
changes on downstream business processes.

3. Cross-Jurisdiction Policy Engines. Extend policy modules to enforce jurisdictional data residency and regulatory
differences automatically during model training and inference.

4. Efficient Federated Protocols. Investigate lightweight federated aggregation schemes tailored for sparse, skewed
transaction data that reduce communication costs.

5. Automated Data Repair. Develop semantically aware data repair systems that can automatically reconcile partial
migrations or rollbacks without manual reconstruction.

6. Robustness to Adversarial Attacks. Integrate adversarial training and continuous red-team evaluations into the
MLOps pipeline.
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