AI-Enhanced Ethernet–Lakehouse Convergence: Dynamic Bayesian Models and Real-Time Streaming Intelligence for SAP Workflows
DOI:
https://doi.org/10.15662/IJEETR.2025.0706017Keywords:
AI-Enhanced Lakehouse, Ethernet Convergence, Dynamic Bayesian Models, Real-Time Data Streaming, SAP Workflows, RAG-LLM, Cloud Computing, Data-Scarce Regions, Probabilistic Modeling, Anomaly Detection, Digital Transformation, Enterprise Data Architecture, Quality Assurance, Threat IntelligenceAbstract
The rapid growth of enterprise data demands architectures that unify low-latency connectivity with scalable analytical intelligence. This work introduces an AI-enhanced framework that converges Ethernet-level data transport with modern lakehouse architectures to optimize SAP-driven business processes. By integrating Dynamic Bayesian Hierarchical Models with real-time streaming pipelines, the system enables continuous probabilistic reasoning, anomaly detection, and adaptive decision-making across heterogeneous operational data sources. The proposed architecture leverages Retrieval-Augmented Generation (RAG), cloud-native orchestration, and intelligent quality assurance to transform SAP workflows into predictive, data-aware ecosystems. Results demonstrate improved data reliability, reduced system latency, and automated insights that enable organizations to operate effectively in both data-rich and data-scarce environments. This research highlights the strategic potential of merging networking intelligence, AI modeling, and lakehouse design to accelerate digital transformation across enterprise landscapes.
References
1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27.
2. Tamizharasi, S., Rubini, P., Saravana Kumar, S., & Arockiam, D. Adapting federated learning-based AI models to dynamic cyberthreats in pervasive IoT environments.
3. Muthusamy, M. (2024). Cloud-Native AI metrics model for real-time banking project monitoring with integrated safety and SAP quality assurance. International Journal of Research and Applied Innovations (IJRAI), 7(1), 10135–10144. https://doi.org/10.15662/IJRAI.2024.0701005
4. Adari, V. K. (2021). Building trust in AI-first banking: Ethical models, explainability, and responsible governance. International Journal of Research and Applied Innovations (IJRAI), 4(2), 4913–4920. https://doi.org/10.15662/IJRAI.2021.0402004
5. Sugumar, R. (2025, March). Diabetes Insights: Gene Expression Profiling with Machine Learning and NCBI Datasets. In 2025 7th International Conference on Intelligent Sustainable Systems (ICISS) (pp. 712-718). IEEE.
6. Suchitra, R. (2023). Cloud-Native AI model for real-time project risk prediction using transaction analysis and caching strategies. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 6(1), 8006–8013. https://doi.org/10.15662/IJRPETM.2023.0601002
7. Nagarajan, G. (2022). An integrated cloud and network-aware AI architecture for optimizing project prioritization in healthcare strategic portfolios. International Journal of Research and Applied Innovations, 5(1), 6444–6450. https://doi.org/10.15662/IJRAI.2022.0501004
8. Pasumarthi, A., & Joyce, S. SABRIX FOR SAP: A COMPARATIVE ANALYSIS OF ITS FEATURES AND BENEFITS. https://www.researchgate.net/publication/395447894_International_Journal_of_Engineering_Technology_Research_Management_SABRIX_FOR_SAP_A_COMPARATIVE_ANALYSIS_OF_ITS_FEATURES_AND_BENEFITS
9. Uddandarao, D. P. Improving Employment Survey Estimates in Data-ScarceRegions Using Dynamic Bayesian Hierarchical Models: Addressing Measurement Challenges in Developing Countries. Panamerican Mathematical Journal, 34(4), 2024. https://doi.org/10.52783/pmj.v34.i4.5584Thangavelu, K., Muthusamy, P., & Das, D. (2024). Real-Time Data Streaming with Kafka: Revolutionizing Supply Chain and Operational Analytics. Los Angeles Journal of Intelligent Systems and Pattern Recognition, 4, 153-189.
10. Shashank, P. S. R. B., Anand, L., & Pitchai, R. (2024, December). MobileViT: A Hybrid Deep Learning Model for Efficient Brain Tumor Detection and Segmentation. In 2024 International Conference on Progressive Innovations in Intelligent Systems and Data Science (ICPIDS) (pp. 157-161). IEEE.
11. Kusumba, S. (2025). Unified Intelligence: Building an Integrated Data Lakehouse for Enterprise-Wide Decision Empowerment. Journal Of Engineering And Computer Sciences, 4(7), 561-567.
12. Mohile, A. (2023). Next-Generation Firewalls: A Performance-Driven Approach to Contextual Threat Prevention. International Journal of Computer Technology and Electronics Communication, 6(1), 6339-6346.
13. Kesavan, E., Srinivasulu, S., & Deepak, N. M. (2025, July). Cloud Computing for Internet of Things (IoT): Opportunities and Challenges. In 2025 2nd International Conference on Computing and Data Science (ICCDS) (pp. 1-6). IEEE.
14. Adari, V. K., Chunduru, V. K., Gonepally, S., Amuda, K. K., & Kumbum, P. K. (2024). Artificial Neural Network in Fibre-Reinforced Polymer Composites using ARAS method. International Journal of Research Publications in Engineering, Technology and Management (IJRPETM), 7(2), 9801-9806.
15. KARIM, A. S. A. (2025). MITIGATING ELECTROMAGNETIC INTERFERENCE IN 10G AUTOMOTIVE ETHERNET: HYPERLYNX-VALIDATED SHIELDING FOR CAMERA PCB DESIGN IN ADAS LIGHTING CONTROL. International Journal of Applied Mathematics, 38(2s), 1257-1268.
16. Kotapati, V. B. R., & Yakkanti, B. (2023). Real-Time Analytics Optimization Using Apache Spark Structured Streaming: A Lambda Architecture-based Scala Framework. American Journal of Data Science and Artificial Intelligence Innovations, 3, 86-119.
17. Kandula, N. Evolution and Impact of Data Warehousing in Modern Business and Decision Support Systems
18. Karanjkar, R., & Karanjkar, D. Quality Assurance as a Business Driver: A Multi-Industry Analysis of Implementation Benefits Across the Software Development Life Cycle. International Journal of Computer Applications, 975, 8887.
19. Prasad Kumar, S. N., Gangurde, R., & Mohite, U. L. (2025). RMHAN: Random Multi-Hierarchical Attention Network with RAG-LLM-Based Sentiment Analysis Using Text Reviews. International Journal of Computational Intelligence and Applications, 2550007.
20. Kumar, R. K. (2023). Cloud-integrated AI framework for transaction-aware decision optimization in agile healthcare project management. International Journal of Computer Technology and Electronics Communication (IJCTEC), 6(1), 6347–6355. https://doi.org/10.15680/IJCTECE.2023.0601004
21. Vasugi, T. (2023). AI-empowered neural security framework for protected financial transactions in distributed cloud banking ecosystems. International Journal of Advanced Research in Computer Science & Technology, 6(2), 7941–7950. https://doi.org/0.15662/IJARCST.2023.0602004
22. Achari, A. P. S. K., & Sugumar, R. (2025, March). Performance analysis and determination of accuracy using machine learning techniques for decision tree and RNN. In AIP Conference Proceedings (Vol. 3252, No. 1, p. 020008). AIP Publishing LLC.
23. Konda, S. K. (2024). AI Integration in Building Data Platforms: Enabling Proactive Fault Detection and Energy Conservation. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 7(3), 10327-10338.
24. Poornima, G., & Anand, L. (2024, April). Effective strategies and techniques used for pulmonary carcinoma survival analysis. In 2024 1st International Conference on Trends in Engineering Systems and Technologies (ICTEST) (pp. 1-6). IEEE.
25. Harish, M., & Selvaraj, S. K. (2023, August). Designing efficient streaming-data processing for intrusion avoidance and detection engines using entity selection and entity attribute approach. In AIP Conference Proceedings (Vol. 2790, No. 1, p. 020021). AIP Publishing LLC.
26. Lipton, Z. C. (2018). The mythos of model interpretability. Communications of the ACM, 61(10), 36–43. (Critique and taxonomy of interpretability.)





