An AI-Driven Cloud-Based Real-Time Analytics Architecture for Risk-Aware Financial and Healthcare Decision Making
DOI:
https://doi.org/10.15662/IJEETR.2023.0503004Keywords:
AI-Driven Analytics, Cloud Computing, Real-Time Data Processing, Risk-Aware Decision Making, Machine Learning, Financial Analytics, Healthcare Analytics, Predictive Risk Modeling, Intelligent SystemsAbstract
The rapid growth of data in financial and healthcare systems demands intelligent, real-time analytics to support accurate and risk-aware decision making. Traditional data processing approaches often fail to handle high-velocity, heterogeneous data while providing timely insights for critical decisions. This paper presents an AI-driven, cloud-based real-time analytics architecture designed to enable risk-aware decision making across financial and healthcare domains.The proposed architecture integrates cloud computing, machine learning, and artificial intelligence to process streaming and batch data in real time, ensuring scalability, low latency, and high availability. Advanced machine learning models are employed for risk prediction, anomaly detection, and forecasting, while AI techniques enhance decision intelligence through adaptive learning and explainability. In the financial domain, the system supports fraud detection, credit risk assessment, and market risk analysis. In healthcare, it enables early disease risk prediction, patient monitoring, and clinical decision support.
Security, privacy, and regulatory compliance are incorporated through encryption, access control, and policy-driven governance. Experimental analysis demonstrates that the architecture improves decision accuracy, reduces response time, and enhances operational efficiency. The proposed framework provides a unified, scalable solution for intelligent, real-time, and risk-aware decision making in modern financial and healthcare ecosystems.
References
1. Aggarwal, C. C. (2018). Machine learning for healthcare. Springer.
2. Chen, M., Hao, Y., Cai, Y., Wang, Y., & Wang, L. (2019). Real-time analytics for financial risk management in cloud environments. Journal of Cloud Computing: Advances, Systems and Applications, 8(1), 12. https://doi.org/10.1186/s13677-019-0124-7.
3. Usha, G., Babu, M. R., & Kumar, S. S. (2017). Dynamic anomaly detection using cross layer security in MANET. Computers & Electrical Engineering, 59, 231-241.
4. Adari, V. K. (2021). Building trust in AI-first banking: Ethical models, explainability, and responsible governance. International Journal of Research and Applied Innovations (IJRAI), 4(2), 4913–4920. https://doi.org/10.15662/IJRAI.2021.0402004
5. Wang, D., Dai, L., Zhang, X., Sayyad, S., Sugumar, R., Kumar, K., & Asenso, E. (2022). Vibration signal diagnosis and conditional health monitoring of motor used in biomedical applications using Internet of Things environment. The Journal of Engineering, 2022(11), 1124-1132.
6. Navandar, P. (2023). The Impact of Artificial Intelligence on Retail Cybersecurity: Driving Transformation in the Industry. Journal of Scientific and Engineering Research, 10(11), 177-181.
7. Kumar, S. N. P. (2022). Machine Learning Regression Techniques for Modeling Complex Industrial Systems: A Comprehensive Summary. International Journal of Humanities and Information Technology (IJHIT), 4(1–3), 67–79. https://ijhit.info/index.php/ijhit/article/view/140/136
8. Anand, L., & Neelanarayanan, V. (2019). Feature Selection for Liver Disease using Particle Swarm Optimization Algorithm. International Journal of Recent Technology and Engineering (IJRTE), 8(3), 6434-6439.
9. Vimal Raja, G. (2022). Leveraging Machine Learning for Real-Time Short-Term Snowfall Forecasting Using MultiSource Atmospheric and Terrain Data Integration. International Journal of Multidisciplinary Research in Science, Engineering and Technology, 5(8), 1336-1339.
10. Nagarajan, G. (2023). AI-Integrated Cloud Security and Privacy Framework for Protecting Healthcare Network Information and Cross-Team Collaborative Processes. International Journal of Engineering & Extended Technologies Research (IJEETR), 5(2), 6292-6297.
11. Paul, D.; Soundarapandiyan, R.; Krishnamoorthy, G. Security-First Approaches to CI/CD in Cloud-Computing Platforms: Enhancing DevSecOps Practices. Aust. J. Mach. Learn. Res. Appl. 2021, 1, 184–225.
12. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
13. Pachyappan, R., Vijayaboopathy, V., & Paul, D. (2022). Enhanced Security and Scalability in Cloud Architectures Using AWS KMS and Lambda Authorizers: A Novel Framework. Newark Journal of Human-Centric AI and Robotics Interaction, 2, 87-119.
14. Hossain, A., ataur Rahman, K., Zerine, I., Islam, M. M., Hasan, S., & Doha, Z. (2023). Predictive Business Analytics For Reducing Healthcare Costs And Enhancing Patient Outcomes Across US Public Health Systems. Journal of Medical and Health Studies, 4(1), 97-111.
15. Vasugi, T. (2022). AI-Enabled Cloud Architecture for Banking ERP Systems with Intelligent Data Storage and Automation using SAP. International Journal of Engineering & Extended Technologies Research (IJEETR), 4(1), 4319-4325.
16. Meka, S. (2022). Engineering Insurance Portals of the Future: Modernizing Core Systems for Performance and Scalability. International Journal of Computer Science and Information Technology Research, 3(1), 180-198.
17. Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
18. Khan, R., McDaniel, P., & Khan, S. U. (2019). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516. https://doi.org/10.1007/s10462-019-09703-8
19. Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2(1), 3. https://doi.org/10.1186/2047-2501-2-3
20. Kagalkar, A. S. S. K. A. Serverless Cloud Computing for Efficient Retirement Benefit Calculations. https://www.researchgate.net/profile/Akshay-Sharma-98/publication/398431156_Serverless_Cloud_Computing_for_Efficient_Retirement_Benefit_Calculations/links/69364e487e61d05b530c88a2/Serverless-Cloud-Computing-for-Efficient-Retirement-Benefit-Calculations.pdf
21. Oleti, Chandra Sekhar. (2022). The future of payments: Building high-throughput transaction systems with AI and Java Microservices. World Journal of Advanced Research and Reviews. 16. 1401-1411. 10.30574/wjarr.2022.16.3.1281
22. Anand, P. V., & Anand, L. (2023, December). An Enhanced Breast Cancer Diagnosis using RESNET50. In 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) (pp. 1-5). IEEE.
23. Praveen Kumar Reddy Gujjala. (2022). Enhancing Healthcare Interoperability Through Artificial Intelligence and Machine Learning: A Predictive Analytics Framework for Unified Patient Care. International Journal of Computer Engineering and Technology (IJCET), 13(3), 181-192.
24. Sudhan, S. K. H. H., & Kumar, S. S. (2016). Gallant Use of Cloud by a Novel Framework of Encrypted Biometric Authentication and Multi Level Data Protection. Indian Journal of Science and Technology, 9, 44.
25. Wang, J., & Alexander, C. A. (2018). Cloud computing and big data analytics: A review of financial applications. Journal of Financial Innovation, 4(2), 15. https://doi.org/10.1186/s40854-018-0091-0





